Mark schemes

(a)

1.

an incorrect value of I from the graph can score all subsequent marks

1

$0.230 = 0.08 \times V$

I = 0.08 (A)

allow a correct substitution of an incorrectly/not converted value of P

1

1

$V = \frac{0.230}{0.08}$

allow a correct rearrangement using an incorrectly/not converted value of P

V = 2.875 (V)

OR

$$I = 0.08 (A) (1)$$

$$V = 0.08 \times 36$$
 (2)

V = 2.88 (V) (1)

OR

$$0.230 = I^2 \times 36(1)$$

$$I = 0.08 (A) (1)$$

 $V = 0.08 \times 36(1)$

allow a correct calculation using an incorrectly/not converted value of P

1

1

(b) the product of current and resistance = a constant

calculation of constant (2.88) using three or more pairs of values

if no other marks scored allow for one mark a statement that doubling one quantity (R or I) halves the other quantity

Electronics (H))		PhysicsAndMathsTu	utor.com
(0	c)	current would be (almost) zero (in the variable resistor)	1	
		(because) the switch has (effectively) zero resistance or		
		the potential difference across the variable resistor is (effectively) zero		
		the switch's resistance is much lower than the variable resistor		
		allow the switch creates a short circuit		
			1	[8]
2. (a	a)	(very high p.d. means) very low currents		
Ζ.			1	
		which means less (thermal) energy is transferred to surroundings		
		allow less power loss in cables		
			1	
		which increases the efficiency of power transmission	1	
()	b)	electric field strength is very high		
			1	
		causing the air to become ionised		
		allow the air breaks down		
		allow the air becomes a conductor		
		allow the air conducts charge		
			1	
		(the kite / string) conducts charge to the person / earth		
		ignore answers referring to the kite touching the power cables		
			1	
(0	c)	straight line passing through the origin		
			1	
		line drawn below existing line for all values	1	
(4)	the potential difference across the wires/cable is the same		
((d)	the potential difference across the wires/cable is the same	1	
		(but) the resistance of the steel wire is greater (and so less current in the		
		עמנין גווב ובאאמווכב טו גווב אנכבו שווב וא עובמנכו (מווע אט ובאג כעוופווג ווו נווג	1	
				[10]

1

1

1

1

1

1

1

1

1

3.

H)		Physic
(a)	potential difference allow p.d. allow voltage	
	temperature	
	in this order only	
(b)	the current increases (when the potential difference increases)	
	(which) causes the temperature of the filament to increase	
	(so) the resistance increases	
	do not accept resistance increases and then levels off	
(c)	a higher proportion / percentage of the (total) power / energy input is use transferred	fully
	wastes less energy is insufficient	
	or higher (useful) power / energy output for the same (total) power / energy	input
(d)	potential difference increases	
	current decreases	

(e) 1000 (Ω)

reason only scores if $R = 1000 \ (\Omega)$

potential difference is shared in proportion to the resistance allow a justification using a correct calculation

1

4.

(f)	12 = I × 7000	1
	$I = \frac{12}{7000}$	
		1
	$I = 1.71 \times 10^{-3} (A)$	
	an answer that rounds to 1.7×10^{-3} (A) scores 3 marks	1
	$I = 1.7 \times 10^{-3} (A)$	
	this answer only	
	or I = 0.0017 (A)	
	an answer of 2.4 \times 10 ⁻³ (A) scores 2 marks	
	if no other marks scored allow 1 mark for calculation of total resistance (7000 Ω)	
	an answer of 1.7 × 10 ⁻³ (A) scores 4 marks	1
		[14]
(a)	50	1
	Hz / hertz	1
	allow Hertz	1
(b)	(both) switches need to be closed / on	-
		1
	to complete the <u>series</u> circuit or	
	to allow charge to flow	
	or so there is a current in the circuit	
		1

5.

()			r nysicsAnuwalns i u	101.00
(c)				
		an answer of 7.5 (A) scores 3 marks		
		an answer of 0.237(A) scores 2 marks		
	1800 = l ² ×	: 32		
		this mark may be awarded if P is incorrectly or not		
		converted		
			1	
	$I^2 = \frac{1800}{32}$			
	or l ² = 56.25			
	1 = 00.20	this mark may be awarded if P is incorrectly or not		
		converted		
			1	
	l = 7.5 (A)			
		this answer only		
			1	
(d)				
		an answer of 300 (s) scores 3 marks		
		an answer of 300 000 (s) scores 2 marks		
	150	000		
	1500 =	0000 t		
		this mark may be awarded if P is incorrectly or not		
		converted		
			1	
	$t = \frac{450\ 000}{1}$	2		
	1500			
		this mark may be awarded if P is incorrectly or not converted		
		Convented	1	
	t = 300 (s)			
	t – 300 (S)	this answer only		
			1	
				[10]
(a)	risk of elec	tric shock (if someone touched the case)		
()		allow risk of electrocution (if someone touched the case)		
		· · · · · · · · · · · · · · · · · · ·	1	

6.

[9]

	(b)	2530 = I × 230	
		this mark may be awarded if P is incorrectly / not converted	1
		2530	1
		$I = \frac{2530}{230}$	
		this mark may be awarded if P is incorrectly / not converted	1
		I = 11 (A)	-
		this answer only	
		an answer of 0.011 (A) scores 2 marks	1
		an answer of 11 (A) scores 3 marks	1
	(c)	E = 2530 × 14	
		this mark may be awarded if P is incorrectly / not converted	1
			1
		E = 35 420 (J) this answer only	
			1
		$35\ 420 = m \times 4200 \times 70$	
		allow their calculated $E = m \times 4200 \times 70$	1
		35420	
		$m = \frac{35420}{4200 \times 70}$	
		allow $m = \frac{\text{their calculated } E}{4200 \times 70}$	
		4200×70	1
		m = 0.12 (kg)	
		allow an answer that is consistent with their calculated value of E	
			1
1	(a)	non-contact (force)	
	(4)	allow electrostatic (force)	
			1
		attraction (between hair and balloon)	
		allow repulsion between the hairs on the head	1

(11)		PhysicsAndMaths Lutor.co
(b)		
	an answer of 2.0 × 10 ⁻⁶ (C) scores 3 marks	
	an answer of 2 × 10 ⁻³ (C) scores 2 marks	
	$0.0050 = Q \times 2500$	
	this mark may be awarded if pd is incorrectly or not converted	1
	$Q = \frac{0.0050}{2500}$	1
	this mark may be awarded if pd is incorrectly or not converted	1
		1
	$Q = 2.0 \times 10^{-6} (C)$	
	or Q = 0.0000020 (C)	
	these answers only	
		1
(c)		
	an answer of 120 (Ω) scores 5 marks	
	$0.16 = 1 \times 4.0 \times 10^{-3}$	
	or	
	$I = \frac{0.16}{4.0 \times 10^{-3}}$	
	this mark may be awarded if time is incorrectly / not converted	
		1
	I = 40 (A)	
	this value only	1
		1
	$4800 = 40 \times R$	
	allow 4800 = their calculated I × R	1
	$R = \frac{4800}{40}$	
	40 $allow R = 4800 / their calculated I$	
		1
	R = 120 (Ω)	
	allow an answer consistent with their calculated I	
		1
		[10]

7.	(a)	$15.7 = \frac{15.8 + 15.3 + \mathbf{X}}{3}$		
			1	
		X = 16.0 (Ω)		
			1	
	(b)	precise results show little variation		
			1	
		the 4 th result was further away from the mean than the other values		
		allow the range of values has increased		
		ignore the 4 th result was an anomaly		
			1	
	(c)	two pairs of values of n and R showing that $n \times R = \text{constant}$		
		e.g. 2 × 24 = 48, 3 × 16 = 48 4 × 12 = 48, 5 × 9.5 = 47.5		
		6 × 8 =48		
			1	
		third pair of values of n and R showing that $n \times R = \text{constant}$		
			1	
		(so) $n \times R$ = constant (showing the student was correct)		
		allow 1 mark each for two statements relating the change in number of resistors to the change in (mean total) resistance		
		allow 1 mark for use of data from graph to confirm at least one statement		
			1	
	(d)	multiple paths for charge / electrons to flow		
		allow current for charge	1	
			1	
		total current is greater (for the same potential difference when more resistors are added)		
			1	
				[9]
8.	(a)	% increase = (10 000 - 3200) × 100		
0.	(a)	% increase = $\frac{(10\ 000\ -\ 3200)}{3200}$ × 100	_	
			1	
		% increase = 212.5 (%)	1	
			1	

(b)

Any two from:

	 no sulfur dioxide released doesn't cause acid rain no particulates released doesn't cause global dimming less carbon dioxide released (per kg of fuel burned) less global warming 	
	allow less climate change	
	 allow less greenhouse gases no solid waste 	
	 gas mining is less destructive than coal mining 	
	ignore less air pollution	
		2
(c)	mean sea surface temperature shows a (steady) increase	1
	over the time period on the graph	
	conditional on scoring 1 st marking point allow between a correct pair of dates at least 10 years apart	
	or	
	from 16.45 (°C) to 16.96 (°C) allow a correct pair of temperatures at least 10 years apart	1
(d)	thermistor C	1
	(because) the change in resistance is greatest	_
	conditional on scoring 1 st marking point allow the gradient is highest allow more sensitive to temperature change	1
	between 0 and 25 °C	-
	conditional on scoring 2 nd marking point	
	allow between 16 and 17 °C	
	if thermistor C is not chosen, allow for 1 mark each:	
	not thermistor A because there is no/little change in resistance	
	not thermistor B as there is only a small change in resistance	
	not thermistor D as there is no data available between 0 and 40 $^\circ ext{C}$	
		1

9.

(a)

(b)

)	5.75 = I × 230	
	$I = \frac{5.75}{230}$	1
		1
	I = 0.025 (A)	1
	230 = 0.025 × R	
	or	
	$R = \frac{230}{0.025}$	
	allow a correct substitution using an incorrect value of I	
	or	
	allow a correct rearrangement using incorrect value of I	1
	R = 9200 (Ω)	
	allow a correct calculation of resistance using an incorrect value of I	
	alternative approach for 4 th and 5 th marks:	
	$5.75 = 0.025^2 \times R(1)$	
	or	
	$R = \frac{5.75}{0.025^2}$	
	$R = 9200 \; (\Omega) \; (1)$	
	alternative approach:	
	$5.75 = \frac{230^2}{R} $ (3)	
	$R = 9200 \; (\Omega) \; (1)$	
		1
)	one wire in the switch is live	
	allow the switch / circuit is live allow one wire is at a potential of 230 V	1
	the electrician is earthed or	
	the electrician is at earth potential	1
	(so) there will be a (large) potential difference between the live wire and the	_
	electrician / earth (if the electrician touched the wire)	-
		1

1

1

(c) 50 Hz has the lowest (maximum) let-go current

a higher / lower / different frequency would allow people to let go at a greater current allow a specific numerical example as opposed to a trend

[10]