Mark schemes

1. (a) $\quad I=0.08(A)$ an incorrect value of I from the graph can score all subsequent marks
$0.230=0.08 \times V$
allow a correct substitution of an incorrectly/not converted value of P
$V=\frac{0.230}{0.08}$
allow a correct rearrangement using an incorrectly/not converted value of P
$\mathrm{V}=2.875(\mathrm{~V})$
OR
$\mathrm{I}=0.08(\mathrm{~A})(1)$
$\mathrm{V}=0.08 \times 36(2)$
$\mathrm{V}=2.88(\mathrm{~V})(1)$
OR
$0.230=I^{2} \times 36(1)$
$I=0.08(A)(1)$
$\mathrm{V}=0.08 \times 36(1)$
$\mathrm{V}=2.88(\mathrm{~V})(1)$
allow a correct calculation using an incorrectly/not converted value of P
(b) the product of current and resistance $=$ a constant
(c) current would be (almost) zero (in the variable resistor)
(because) the switch has (effectively) zero resistance
or
the potential difference across the variable resistor is (effectively) zero
the switch's resistance is much lower than the variable resistor
allow the switch creates a short circuit
2. (a) (very high p.d. means) very low currents
which means less (thermal) energy is transferred to surroundings allow less power loss in cables
(d) the potential difference across the wires/cable is the same
(but) the resistance of the steel wire is greater (and so less current in the steel)
3. (a) potential difference
allow p.d.
allow voltage
temperature
in this order only
(b) the current increases (when the potential difference increases)
(which) causes the temperature of the filament to increase
(so) the resistance increases
do not accept resistance increases and then levels off
(c) a higher proportion / percentage of the (total) power / energy input is usefully transferred
wastes less energy is insufficient
or
higher (useful) power / energy output for the same (total) power / energy input
(d) potential difference increases
current decreases
(e) $1000(\Omega)$
reason only scores if $R=1000(\Omega)$
potential difference is shared in proportion to the resistance
allow a justification using a correct calculation
(f) $12=I \times 7000$
$I=\frac{12}{7000}$
$\mathrm{I}=1.71 \times 10^{-3}(\mathrm{~A})$
an answer that rounds to $1.7 \times 10^{-3}(\mathrm{~A})$ scores 3 marks
$I=1.7 \times 10^{-3}(\mathrm{~A})$
this answer only
or
$\mathrm{I}=0.0017(\mathrm{~A})$ an answer of $2.4 \times 10^{-3}(\mathrm{~A})$ scores 2 marks if no other marks scored allow 1 mark for calculation of total resistance (7000 Ω)
an answer of $1.7 \times 10^{-3}(\mathrm{~A})$ scores 4 marks
4. (a) 50

Hz / hertz allow Hertz
(b) (both) switches need to be closed / on
to complete the series circuit
or
to allow charge to flow
or
so there is a current in the circuit
(c)
an answer of 7.5 (A) scores 3 marks
an answer of $0.237(A)$ scores 2 marks
$1800=\mathrm{I}^{2} \times 32$
this mark may be awarded if P is incorrectly or not converted
$I^{2}=\frac{1800}{32}$
or
$\mathrm{I}^{2}=56.25$
this mark may be awarded if P is incorrectly or not converted
$\mathrm{I}=7.5(\mathrm{~A})$
this answer only
(d)
an answer of 300 (s) scores 3 marks
an answer of 300000 (s) scores 2 marks
$1500=\frac{450000}{\mathrm{t}}$
this mark may be awarded if P is incorrectly or not converted
$t=\frac{450000}{1500}$
this mark may be awarded if P is incorrectly or not converted
$t=300(s)$
this answer only
5. (a) risk of electric shock (if someone touched the case) allow risk of electrocution (if someone touched the case)
(b) $2530=1 \times 230$
this mark may be awarded if P is incorrectly / not converted

1
$I=\frac{2530}{230}$
this mark may be awarded if P is incorrectly / not converted
$I=11(A)$
this answer only
an answer of 0.011 (A) scores 2 marks
an answer of 11 (A) scores 3 marks
(c) $E=2530 \times 14$
this mark may be awarded if P is incorrectly / not converted
$\mathrm{E}=35420$ (J)
this answer only
$35420=m \times 4200 \times 70$
allow their calculated $E=m \times 4200 \times 70$
$m=\frac{35420}{4200 \times 70}$
allow $m=\frac{\text { their calculated } E}{4200 \times 70}$

$$
\mathrm{m}=0.12(\mathrm{~kg})
$$

allow an answer that is consistent with their calculated value of E
6. (a) non-contact (force)
allow electrostatic (force)
attraction (between hair and balloon)
allow repulsion between the hairs on the head
(b)
an answer of $2.0 \times 10^{-6}(\mathrm{C})$ scores 3 marks
an answer of $2 \times 10^{-3}(\mathrm{C})$ scores 2 marks
$0.0050=Q \times 2500$
this mark may be awarded if pd is incorrectly or not converted
(c)
an answer of $120(\Omega)$ scores 5 marks
$0.16=I \times 4.0 \times 10^{-3}$
or
$I=\frac{0.16}{4.0 \times 10^{-3}}$
this mark may be awarded if time is incorrectly / not converted
$\mathrm{I}=40(\mathrm{~A})$
this value only
$4800=40 \times R$
allow $4800=$ their calculated $I \times R$
$R=\frac{4800}{40}$
allow $R=4800 /$ their calculated I
$R=120(\Omega)$
allow an answer consistent with their calculated I
$Q=2.0 \times 10^{-6}(C)$
or
$\mathrm{Q}=0.0000020$ (C)
these answers only
7. (a) $\quad 15.7=\frac{15.8+15.3+\mathrm{X}}{3}$
$X=16.0(\Omega)$
(b) precise results show little variation
the $4^{\text {th }}$ result was further away from the mean than the other values
allow the range of values has increased
ignore the $4^{\text {th }}$ result was an anomaly
1
(c) two pairs of values of n and R showing that $n \times R=$ constant

$$
\begin{aligned}
& e . g .2 \times 24=48,3 \times 16=48 \\
& 4 \times 12=48,5 \times 9.5=47.5 \\
& 6 \times 8=48
\end{aligned}
$$

third pair of values of n and R showing that $n \times R=$ constant
(so) $n \times R=$ constant (showing the student was correct)
allow 1 mark each for two statements relating the change in number of resistors to the change in (mean total) resistance allow 1 mark for use of data from graph to confirm at least one statement
(d) multiple paths for charge / electrons to flow allow current for charge
total current is greater (for the same potential difference when more resistors are added)
8. (a) $\%$ increase $=\frac{(10000-3200)}{3200} \times 100$
\% increase = 212.5 (\%)
(b) Any two from:

- no sulfur dioxide released
- doesn't cause acid rain
- no particulates released
- doesn't cause global dimming
- less carbon dioxide released (per kg of fuel burned)
- less global warming allow less climate change allow less greenhouse gases
- no solid waste
- gas mining is less destructive than coal mining ignore less air pollution
(c) mean sea surface temperature shows a (steady) increase
over the time period on the graph
conditional on scoring ${ }^{\text {st }}$ marking point allow between a correct pair of dates at least 10 years apart
or
from $16.45\left({ }^{\circ} \mathrm{C}\right)$ to $16.96\left({ }^{\circ} \mathrm{C}\right)$ allow a correct pair of temperatures at least 10 years apart
(d) thermistor C
(because) the change in resistance is greatest
conditional on scoring $1^{\text {st }}$ marking point allow the gradient is highest allow more sensitive to temperature change
between 0 and $25^{\circ} \mathrm{C}$
conditional on scoring $2^{\text {nd }}$ marking point
allow between 16 and $17^{\circ} \mathrm{C}$
if thermistor C is not chosen, allow for 1 mark each:
not thermistor A because there is no/little change in resistance not thermistor B as there is only a small change in resistance not thermistor D as there is no data available between 0 and $40^{\circ} \mathrm{C}$

9. (a) $5.75=\mathrm{I} \times 230$

1
$I=\frac{5.75}{230}$
$\mathrm{I}=0.025(\mathrm{~A})$
$230=0.025 \times R$
or
$R=\frac{230}{0.025}$
allow a correct substitution using an incorrect value of I
Or
allow a correct rearrangement using incorrect value of I
$R=9200(\Omega)$
allow a correct calculation of resistance using an incorrect value of I
alternative approach for $4^{\text {th }}$ and $5^{\text {th }}$ marks:
$5.75=0.025^{2} \times R(1)$
or
$R=\frac{5.75}{0.025^{2}}$
$R=9200(\Omega)(1)$
alternative approach:
$5.75=\frac{230^{2}}{R}$
$R=9200(\Omega)(1)$
(b) one wire in the switch is live allow the switch / circuit is live allow one wire is at a potential of 230 V
the electrician is earthed
or
the electrician is at earth potential
(so) there will be a (large) potential difference between the live wire and the electrician / earth (if the electrician touched the wire)
(c) 50 Hz has the lowest (maximum) let-go current
a higher / lower / different frequency would allow people to let go at a greater current allow a specific numerical example as opposed to a trend

1
[10]

